It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Our research demonstrates the effectiveness of fluorescence quenching between polyethyleneimine functionalised carbon dots (PEI-CDs) and cyclodextrin encapsulated ferrocene for fluorogenic detection of nitric oxide (NO). We confirmed that ferrocene can be used as a NO probe by observing its ability to quench the fluorescence emitted from PEI-CDs, with NO concentrations ranging from 1 × 10–6 M to 5 × 10–4 M. The photoluminescence intensity (PL) of PEI-CDs decreased linearly, with a detection limit of 500 nM. Previous studies have shown that ferrocene is a selective probe for NO detection in biological systems by electrochemical and colorimetric methods. The addition of fluorogenic NO detection using ferrocene as a probe enables the development of a three-way sensor probe for NO. Furthermore, the triple mode NO detection (electrochemical, colorimetric, and fluorogenic) with ferrocene aids in processing sensing data in a controlled manner similar to Boolean logic operations. This work presents key findings on the mechanism of fluorescence quenching between ferrocene hyponitrite intermediate and PEI-CDs, the potential of using ferrocene for triple channel NO detection as a single molecular entity, and the application of logic gates for NO sensing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 NSS College, Nemmara, India
2 CSIR-Central Electrochemical Research Institute, Electrodics and Electrocatalysis Division, Karaikudi, India (GRID:grid.417628.e) (ISNI:0000 0004 0636 1536)