It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Additive manufacturing, or 3D printing attracts growing attention as a promising method for creating functionally graded materials. Fused deposition modeling (FDM) is widely available, but due to its simple process, creating spatial gradation of diverse properties using FDM is challenging. Here, we present a 3D printed digital material filament that is structured towards 3D printing of functional gradients, utilizing only a readily available FDM printer and filaments. The DM filament consists of multiple base materials combined with specific concentrations and distributions, which are FDM printed. When the DM filament is supplied to the same printer, its constituent materials are homogeneously blended during extrusion, resulting in the desired properties in the final structure. This enables spatial programming of material properties in extreme variations, including mechanical strength, electrical conductivity, and color, which are otherwise impossible to achieve with traditional FDMs. Our approach can be readily adopted to any standard FDM printer, enabling low-cost production of functional gradients.
3D printing of functional gradients often requires specialized equipment and costly materials, constraining scalability. Here, using a conventional desktop FDM printer, authors present a 3D printing strategy using a filament that is itself 3D-printed to produce functional gradients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Seoul National University, Soft Robotics Research Center, Seoul, Republic of Korea (GRID:grid.31501.36) (ISNI:0000 0004 0470 5905); Seoul National University, Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul, Republic of Korea (GRID:grid.31501.36) (ISNI:0000 0004 0470 5905)
2 Seoul National University, Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul, Republic of Korea (GRID:grid.31501.36) (ISNI:0000 0004 0470 5905)