Abstract

Understanding the solid target dynamics resulting from the interaction with an ultrashort laser pulse is a challenging fundamental multi-physics problem involving atomic and solid-state physics, plasma physics, and laser physics. Knowledge of the initial interplay of the underlying processes is essential to many applications ranging from low-power laser regimes like laser-induced ablation to high-power laser regimes like laser-driven ion acceleration. Accessing the properties of the so-called pre-plasma formed as the laser pulse’s rising edge ionizes the target is complicated from the theoretical and experimental point of view, and many aspects of this laser-induced transition from solid to overdense plasma over picosecond timescales are still open questions. On the one hand, laser-driven ion acceleration requires precise control of the pre-plasma because the efficiency of the acceleration process crucially depends on the target properties at the arrival of the relativistic intensity peak of the pulse. On the other hand, efficient laser ablation requires, for example, preventing the so-called “plasma shielding”. By capturing the dynamics of the initial stage of the interaction, we report on a detailed visualization of the pre-plasma formation and evolution. Nanometer-thin diamond-like carbon foils are shown to transition from solid to plasma during the laser rising edge with intensities < 1016 W/cm². Single-shot near-infrared probe transmission measurements evidence sub-picosecond dynamics of an expanding plasma with densities above 1023 cm−3 (about 100 times the critical plasma density). The complementarity of a solid-state interaction model and kinetic plasma description provides deep insight into the interplay of initial ionization, collisions, and expansion.

A novel, single-shot probing technique visualizes the ultrafast laser-induced solid-to-plasma transition. The entire target dynamics (ionization to overdense plasma) is elucidated by combining solid-state interaction model and kinetic plasma description.

Details

Title
Optical probing of ultrafast laser-induced solid-to-overdense-plasma transitions
Author
Azamoum, Yasmina 1   VIAFID ORCID Logo  ; Becker, Georg Alexander 2 ; Keppler, Sebastian 1 ; Duchateau, Guillaume 3 ; Skupin, Stefan 4   VIAFID ORCID Logo  ; Grech, Mickael 5 ; Catoire, Fabrice 6 ; Hell, Sebastian 2 ; Tamer, Issa 1 ; Hornung, Marco 1 ; Hellwing, Marco 2 ; Kessler, Alexander 7 ; Schorcht, Franck 7 ; Kaluza, Malte Christoph 1   VIAFID ORCID Logo 

 GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (GRID:grid.159791.2) (ISNI:0000 0000 9127 4365); Helmholtz Institute Jena, Jena, Germany (GRID:grid.450266.3); Friedrich-Schiller-Universität Jena, Institute of Optics and Quantum Electronics, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794) 
 Friedrich-Schiller-Universität Jena, Institute of Optics and Quantum Electronics, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794) 
 CS60001, CEA-CESTA, 15 Avenue des Sablières, Le Barp, France (GRID:grid.9613.d) 
 Université de Lyon 1, Institut Lumière Matière, UMR 5306 - CNRS, Villeurbanne, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757) 
 Institut Polytechnique de Paris, LULI, CNRS, CEA, Sorbonne Université, Palaiseau, France (GRID:grid.508893.f) 
 CELIA, Université de Bordeaux-CNRS-CEA, Talence, France (GRID:grid.462737.3) (ISNI:0000 0004 0382 7820) 
 GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany (GRID:grid.159791.2) (ISNI:0000 0000 9127 4365); Helmholtz Institute Jena, Jena, Germany (GRID:grid.450266.3) 
Pages
109
Publication year
2024
Publication date
2024
Publisher
Springer Nature B.V.
e-ISSN
20477538
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3052307571
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.