It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Omnidirectional images are increasingly being used in various areas, such as urban mapping, virtual reality, agriculture, and robotics. These images can be generated by different acquisition systems, including multi-camera systems, which can acquire higher-resolution images. Stitching techniques are often used and can be suitable for non-metric applications, but rigorous photogrammetric processing is recommended when having more accurate requirements. The main challenges related to this kind of product are the system calibration and the generation of the final omnidirectional images. When using multi-camera systems, the displacement of the cameras' perspective centres can affect the generation of the omnidirectional images and the resulting accuracy. A common approach to minimising the resulting parallax error is to establish a value for the projection cylinder radius as close as possible to the object's depth. This work proposes a highly accurate simultaneous calibration technique for multiple camera systems using self-calibrating bundle adjustment with constraints of stability of the relative orientation parameters. These parameters are later used to generate a projecting cylindrical surface, maintaining the original camera perspective centres and relative orientation angles. The experiments show that using constraints improved both the calibration results and the final omnidirectional images. Residual mismatches between points in overlapping areas are subpixel.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Cartography, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, São Paulo, 19060-900, Brazil; Department of Cartography, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, São Paulo, 19060-900, Brazil