Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Duplex stainless steels are materials with high performance under mechanical stress and stress corrosion in chloride ion environments. Despite being used in many new applications such as components for offshore drilling platforms as well as in the chemical and petrochemical industry, the automotive industry, etc., they face issues of wear and hardness that limit current applications and prevent the creation of new use opportunities. To address these shortcomings, it is proposed to develop a hardfacing process by a special welding technique using a universal TIG source adapted for manual welding with a pulsed current, and a manganese austenitic alloy electrode as filler material. The opportunity to deposit layers of manganese austenitic steel through welding creates advantages related to the possibility of achieving high mechanical characteristics of this steel exclusively in the working area of the part, while the substrate material will not undergo significant changes in chemical composition. As a result of the high strain hardening rate, assisted mainly by mechanical twinning, manganese austenitic alloys having a face-centered cubic crystal lattice (f.c.c) and low stacking fault energy (SFE = 20–40 mJ/m2) at room temperature, exhibit high wear resistance and exceptional toughness. Following cold deformation, the hardness of the deposited metal increases to 465 HV5–490 HV5. The microstructural characteristics were investigated through optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and Vickers hardness measurements (HV). The obtained results highlighted the feasibility of forming hard coatings on duplex stainless steel substrates.

Details

Title
Microstructural Investigations of Weld Deposits from Manganese Austenitic Alloy on X2CrNiMoN22-5-3 Duplex Stainless Steel
Author
Mitelea, Ion 1 ; Mutașcu, Daniel 1 ; Karancsi, Olimpiu 2 ; Crăciunescu, Corneliu Marius 1   VIAFID ORCID Logo  ; Buzdugan, Dragoș 1   VIAFID ORCID Logo  ; Ion-Dragoș Uțu 1   VIAFID ORCID Logo 

 Department of Materials and Fabrication Engineering, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania; [email protected] (I.M.); [email protected] (D.M.); [email protected] (C.M.C.); [email protected] (D.B.) 
 Department of Oral Implantology and Prosthetic Restorations on Implants, Victor Babes, University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; [email protected] 
First page
3751
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3053138708
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.