Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Convolutional neural networks (CNNs) have demonstrated remarkable performance in many areas but require significant computation and storage resources. Quantization is an effective method to reduce CNN complexity and implementation. The main research objective is to develop a scalable quantization algorithm for CNN hardware design and model the performance metrics for the purpose of CNN implementation in resource-constrained devices (RCDs) and optimizing layers in deep neural networks (DNNs). The algorithm novelty is based on blending two quantization techniques to perform full model quantization with optimum accuracy, and without additional neurons. The algorithm is applied to a selected CNN model and implemented on an FPGA. Implementing CNN using broad data is not possible due to capacity issues. With the proposed quantization algorithm, we succeeded in implementing the model on the FPGA using 16-, 12-, and 8-bit quantization. Compared to the 16-bit design, the 8-bit design offers a 44% decrease in resource utilization, and achieves power and energy reductions of 41% and 42%, respectively. Models show that trading off one quantization bit yields savings of approximately 5.4K LUTs, 4% logic utilization, 46.9 mW power, and 147 μJ energy. The models were also used to estimate performance metrics for a sample DNN design.

Details

Title
Quantization-Based Optimization Algorithm for Hardware Implementation of Convolution Neural Networks
Author
Mohd, Bassam J 1   VIAFID ORCID Logo  ; Ahmad Yousef, Khalil M 1   VIAFID ORCID Logo  ; AlMajali, Anas 1   VIAFID ORCID Logo  ; Hayajneh, Thaier 2   VIAFID ORCID Logo 

 Department of Computer Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan; [email protected] (K.M.A.Y.); [email protected] (A.A.) 
 Department of Computer and Information Sciences, Fordham University, New York, NY 10023, USA; [email protected] 
First page
1727
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3053156843
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.