Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Point cloud-based detection focuses on land traffic, rarely marine, facing issues with ships: it struggles in bad weather due to reliance on adverse weather data and fails to detect ships effectively due to overlooking size and appearance differences. Addressing the above challenges, our work introduces point cloud data of marine scenarios under realistically simulated adverse weather conditions and a dedicated Ship Detector tailored for marine environments. To adapt to various maritime weather conditions, we simulate realistic rain and fog in collected marine scene point cloud data. Additionally, addressing the issue of losing geometric and height information during feature extraction for large objects, we propose a Ship Detector. It employs a dual-branch sparse convolution layer for extracting multi-scale 3D feature maps, effectively minimizing height information loss. Additionally, a multi-scale 2D convolution module is utilized, which encodes and decodes feature maps and directly employs 3D feature maps for target prediction. To reduce dependency on existing data and enhance model robustness, our training dataset includes simulated point cloud data representing adverse weather conditions. In maritime point cloud ship detection, our Ship Detector, compared to adjusted small object detectors, demonstrates the best performance.

Details

Title
Ship Detection in Maritime Scenes under Adverse Weather Conditions
Author
Zhang, Qiuyu 1   VIAFID ORCID Logo  ; Wang, Lipeng 1   VIAFID ORCID Logo  ; Meng, Hao 1 ; Zhang, Zhi 1 ; Yang, Chunsheng 2 

 The College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; [email protected] (Q.Z.); [email protected] (H.M.); [email protected] (Z.Z.) 
 National Research Council Canada, Ottawa, ON K1A 0R6, Canada; [email protected] 
First page
1567
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3053165345
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.