It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The fusion of primary and secondary functions refers to integrating the function of primary equipment and secondary equipment together. If doing so, the working condition of the equipment for primary and secondary fusion becomes more and more complex and bad, especially the transformer working in the smaller workspace after fusing. Therefore, this paper focuses on the transformer used in primary and secondary fusion pole-mounted Switchgear and establishes the temperature field and electric field simulation model of the primary and secondary fusion pole-mounted switchgear transformer, respectively, and the temperature rise and the environment electric field interference influencing the error of transformer are analyzed as well. When the working environment temperature ranges from -40 to 70°C, the maximum error of low-power current transformers and resistive voltage transformers is 0.1246% and 0.0371%, respectively. The electric field is one of the main factors influencing resistive voltage transformers, which makes ratio errors and angle errors -0.256% and -22.5392’, respectively. The research reveals that under conditions, the error is mainly dependent on temperature rise and electric field. These two factors have a great influence on the error, while the transformers still have enough reliability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Automation, Wuhan University of Technology , Wuhan 430070 , China
2 China Electric Power Research Institute , Wuhan 430074 , China