Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Detecting anomalies in large, complex systems is a critical and challenging task, and this is especially true for high-dimensional anomaly detection due to the underlying dependency structures among sensors. To incorporate the interrelationships among various sensors, a novel sparsity-constrained vector autoregressive moving average (scVARMA) model is proposed for anomaly detection in complex systems with multisensory signals. This model aims to leverage the inherent relationships and dynamics among various sensor readings, providing a more comprehensive and accurate analysis suitable for complex systems’ complex behavior. This research uses convex optimization to search for a parameterization that is sparse based on the principal of parsimony. This sparse model will not only contribute to meeting the real-time requirements of online monitoring strategies but also keeps the correlations among different sensory signals. The performance of the proposed scVARMA model is validated using real-world data from complex systems. The results affirm the superiority of the proposed scheme, demonstrating its enhanced performance and potential in practical applications.

Details

Title
Sparsity-Constrained Vector Autoregressive Moving Average Models for Anomaly Detection of Complex Systems with Multisensory Signals
Author
Ma, Meng 1   VIAFID ORCID Logo  ; Zhang, Zhongyi 1 ; Zhai, Zhi 1   VIAFID ORCID Logo  ; Zhong, Zhirong 2   VIAFID ORCID Logo 

 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] (Z.Z.); [email protected] (Z.Z.) 
 School of Future Technology, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] 
First page
1304
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3053202718
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.