Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Brzi putnički brodovi, integrirani riječni i pomorski brodovi, kontejnerski brodovi, tankeri za naftu i druga podvodna vozila u pomorskom prometu spadaju u vrste plovila koja moraju biti opremljena AIS-от i VHF-om. Sigurnost plovidbe jedan je od najvećih problema u pomorskom sektoru, posebice u Vijetnamu. Upravljanje pomorskim prometom u morskim lukama s gustim prometom čest je i težak problem, uglavnom na lokacijama gdje je infrastruktura nedovoljno razvijena da odgovori na brzo rastuće zahtjeve suvremenog svijeta. Stoga je potrebno stvoriti integrirani sustav upravljanja pomorstvom kako bi se poboljšala učinkovitost iskorištavanja podataka i poboljšala pomorska sigurnost. Kako bi se riješio ovaj izazov, ovim istraživanjem predlaže se model predviđanja stanja pomorskog prometa (MTSP) u kanalima gdje je prikupljanje podataka u stvarnom vremenu nedovoljno na određenim lokacijama. Preporučena je metoda dubinskog učenja koja se koristi mrežama dugotrajne kratkoročne memorije (LSTM) za predviđanje sigurnog puta plovila u slučaju da nedostaju segmenti podataka. Nalazi su pokazali da predloženi pristup potiče rudarenje povijesnih podataka о plovilima za pomorski promet, spreman je za primjenu i može se lako implementirati u računalni program ili mrežnu aplikaciju.

Alternate abstract:

High-speed passenger vessels, integrated river and sea vessels, container vessels, oil tankers, and other underwater vehicles operating in maritime traffic are among the types of vessels that must be equipped with AIS and VHP. The safety of navigation is one of the major problems in the maritime sector, particularly in Vietnam. Furthermore, marine traffic in the seaport zone is a common and difficult issue to manage in areas with a high volume of vessel traffic, mostly in places where the infrastructure supporting navigation is inadequately developed to meet the rapidly growing demands of the contemporary world. Therefore, it is necessary to create an integrated maritime management system to improve the efficiency of data exploitation and support maritime safety. To address this challenge, this study suggests a Maritime Traffic State Prediction (MTSP) model to predict traffic conditions in the channels where real-time data collection is insufficient in some specific locations. We recommend a deep learning method using Long ShortTerm Memory (LSTM) networks to predict the safe path of the vessel in case of missing data segments. The findings have shown that the proposed approach encourages the mining of historical vessel data for maritime traffic, is ready to be applied, and can easily be implemented in a computer program or a web-based app.

Details

Title
Maritime Data Mining for Marine Safety Based on Deep Learning: Southern Vietnam Case Study
Author
Pham, Tuan-Anh 1 ; Do, Viet-Dung 1 ; Dang, Xuan-Kien 1 ; Pham, Thi-Duyen Anh 1 ; Koboević, Žarko 2 

 Artificial Intelligence in Transportation Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam 
 University of Dubrovnik Dubrovnik, Croatia 
Pages
21-29
Publication year
2024
Publication date
2024
Publisher
Sveuiliste u Dubrovniku
ISSN
04696255
e-ISSN
18486320
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3053241461
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.