Abstract

Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their convergence speed and data noise are currently the main problems they face. In order to accelerate the working process of the algorithm, this study introduces a data warehouse into the K-Means algorithm, and connects the time series and voltage interaction functions with the long-and-short-term memory network for efficient information analysis of power grid data, generating fusion algorithms. The study conducted experiments on the Netloss dataset and simultaneously conducted experiments on three models, including long-and-short-term memory networks, to verify the superiority of the fusion algorithm. Under the same experimental voltage, the circuit power flows of the four models were 0.37, 0.64, 0.79, and 0.82A, respectively, indicating that the algorithm effectively controlled the electrical dataset. Its measurement accuracy was the highest among the four models, at 91.7%. The experimental results show that the fusion algorithm proposed in the study has precise control ability in power grid datasets, and can effectively mine association rules on large-scale datasets.

Details

Title
Enhancing Power Grid Data Analysis with Fusion Algorithms for Efficient Association Rule Mining in Large-Scale Datasets
Author
Sun, Qiongqiong
Section
Articles
Publication year
2024
Publication date
Jun 2024
Publisher
Agora University of Oradea
ISSN
18419836
e-ISSN
18419844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3053496957
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.