It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Wave-based cryptography, at the vanguard of advancing technologies in advanced information science, is essential for establishing a diverse array of secure cryptographic platforms. The realization of these platforms hinges on the intelligent application of multiplexing techniques, seamlessly combined with appropriate metasurface technology. Nevertheless, existing multi-channel encryption technologies based on metasurfaces face challenges related to information leakage during partial channel decoding processes. In this paper, we present a reprogrammable metasurface for polarization modulation. This metasurface not only allows for the arbitrary customization of linearly polarized reflected waves but also enables real-time amplitude modulation. Here, relying on polarization amplitude control, a fully secure communication protocol is developed precisely in the terahertz (THz) spectrum to achieve real-time information encryption based on polarization modulation metasurfaces where access to information is highly restricted. The proposed metasurface employs the double random phase encryption (DRPE) algorithm for information encryption. It transmits the encrypted data through different polarization channels using two graphene nanoribbons, exclusively controlled by external biasing conditions. Various encryption scenarios have been outlined to fortify information protection against potential eavesdroppers. The simulated results show that this unique technology for hiding images by manipulating the polarization of the reflected wave provides new opportunities for various applications, including encryption, THz communications, THz secure data storage, and imaging.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Iran University of Science and Technology, School of Electrical Engineering, Tehran, Iran (GRID:grid.411748.f) (ISNI:0000 0001 0387 0587)