It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Underpinning much work on the use of Virtual Reality technologies in design prototyping, is the need to reliably track the 3D position of a physical object in real space, then allowing synchronisation with a digital counterpart. With many tracking methods requiring changes to object geometry, this work develops and benchmarks four minimally invasiveness 6 DoF tracking approaches, before discussing their use in a prototyping context. Results show that using AI and point cloud methods, accuracies of 20mm at 20Hz are achievable on low-end hardware with no alterations to the prototype needed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Bristol, United Kingdom