It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The inaugural AI4EIC Hackathon unfolded as a high-point satellite event during the second AI4EIC Workshop at William & Mary. The workshop itself boasted over two hundred participants in a hybrid format and delved into the myriad applications of Artificial Intelligence and Machine Learning (AI/ML) for the Electron-Ion Collider (EIC). This workshop aimed to catalyze advancements in AI/ML with applications ranging from advancements in accelerator and detector technologies—highlighted by the ongoing work on the ePIC detector and potential development of a second detector for the EIC—to data analytics, reconstruction, and particle identification, as well as the synergies between theoretical and experimental research. Complementing the technical agenda was an enriched educational outreach program that featured tutorials from leading AI/ML experts representing academia, national laboratories, and industry. The hackathon, held on the final day, showcased international participation with ten teams from around the globe. Each team, comprising up to four members, focused on the dual-radiator Ring Imaging Cherenkov (dRICH) detector, an integral part of the particle identification (PID) system in ePIC. The data for the hackathon were generated using the ePIC software suite. While the hackathon presented questions of increasing complexity, its challenges were designed with deliberate simplifications to serve as a preliminary step toward the integration of machine learning and deep learning techniques in PID with the dRICH detector. This article encapsulates the key findings and insights gained from this unique experience.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer