It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Gaze estimation is long been recognised as having potential as the basis for human-computer interaction (HCI) systems, but usability and robustness of performance remain challenging . This work focuses on systems in which there is a live video stream showing enough of the subjects face to track eye movements and some means to infer gaze location from detected eye features. Currently, systems generally require some form of calibration or set-up procedure at the start of each user session. Here we explore some simple strategies for enabling gaze based HCI to operate immediately and robustly without any explicit set-up tasks. We explore different choices of coordinate origin for combining extracted features from multiple subjects and the replacement of subject specific calibration by system initiation based on prior models. Results show that referencing all extracted features to local coordinate origins determined by subject start position enables robust immediate operation. Combining this approach with an adaptive gaze estimation model using an interactive user interface enables continuous operation with the 75th percentile gaze errors of 0.7
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK (GRID:grid.13097.3c) (ISNI:0000 0001 2322 6764)