Full text

Turn on search term navigation

© 2024. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies/

Abstract

Hollow hybrid structural tubes were evaluated using commercial-grade Diamond Micro Expanded Mesh (DMEM) thin mesh of aluminum (Al) as structural reinforcement. Axial, transverse (flexural), and radial compression tests were performed on four different layered hybrid structures using bamboo (Bm) and basalt (B). With a maximum force of 34.7 kN, compressive ultimate strength of 238 MPa, and strain of 12.6%, AlBmB (with layers labeled from inside to outside) was the best performer in the axial compression test. AlBmB’s adaptability was demonstrated by the flexural test, showing a maximum bending force of 4.7 kN, a flexural strength of 97.7 MPa, and a decreased deflection of 13.2 mm. Radial compression test results underscored the superior energy absorption characteristics of AlBmB. The varying material interfaces in the hybrid tubes yielded distinctive performances. AlBmB, incorporating bamboo and basalt layers, stood out with superior energy absorption and crush force characteristics, indicating enhanced crashworthiness. The other hybrids AlBm, AlB, and BmB also exhibited commendable performances, emphasizing the adaptability of different material combinations. The meticulous selection of DMEM and innovative roll wrapping method for fabrication reliably influenced the tubes’ mechanical properties. The study contributes to advancing the design of lightweight, durable, and high-strength components.

Details

Title
Crash-worthiness analysis of hollow hybrid structural tube by aluminum with basalt-bamboo hybrid fiber laminates by roll wrapping method
Author
Govindarajan, P R; Shanmugavel, R; Palanisamy, S; Khan, T; Ahmed, O S
Pages
3106-3120
Section
Research
Publication year
2024
Publication date
May 2024
Publisher
North Carolina State University
e-ISSN
19302126
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3058855271
Copyright
© 2024. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies/