It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The United Nations Sustainable Development Goals (SDGs) are a global consensus on the world’s most pressing challenges. They come with a set of 232 indicators against which countries should regularly monitor their progress, ensuring that everyone is represented in up-to-date data that can be used to make decisions to improve people’s lives. However, existing data sources to measure progress on the SDGs are often outdated or lacking appropriate disaggregation. We evaluate the value that anonymous, publicly accessible advertising data from Facebook can provide in mapping socio-economic development in two low and middle income countries, the Philippines and India. Concretely, we show that audience estimates of how many Facebook users in a given location use particular device types, such as Android vs. iOS devices, or particular connection types, such as 2G vs. 4G, provide strong signals for modeling regional variation in the Wealth Index (WI), derived from the Demographic and Health Survey (DHS). We further show that, surprisingly, the predictive power of these digital connectivity features is roughly equal at both the high and low ends of the WI spectrum. Finally we show how such data can be used to create gender-disaggregated predictions, but that these predictions only appear plausible in contexts with gender equal Facebook usage, such as the Philippines, but not in contexts with large gender Facebook gaps, such as India.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 HBKU, Qatar Computing Research Institute, Doha, Qatar (GRID:grid.452146.0) (ISNI:0000 0004 1789 3191)
2 Thinking Machines, Manila, Philippines (GRID:grid.452146.0)
3 UNICEF Innovation, New York, USA (GRID:grid.420318.c) (ISNI:0000 0004 0402 478X); IT University, Department of Computer Science, Copenhagen, Denmark (GRID:grid.32190.39) (ISNI:0000 0004 0620 5453)
4 UNICEF Innovation, New York, USA (GRID:grid.420318.c) (ISNI:0000 0004 0402 478X)