Abstract

The coronary angiogram is the gold standard for evaluating the severity of coronary artery disease stenoses. Presently, the assessment is conducted visually by cardiologists, a method that lacks standardization. This study introduces DeepCoro, a ground-breaking AI-driven pipeline that integrates advanced vessel tracking and a video-based Swin3D model that was trained and validated on a dataset comprised of 182,418 coronary angiography videos spanning 5 years. DeepCoro achieved a notable precision of 71.89% in identifying coronary artery segments and demonstrated a mean absolute error of 20.15% (95% CI: 19.88–20.40) and a classification AUROC of 0.8294 (95% CI: 0.8215–0.8373) in stenosis percentage prediction compared to traditional cardiologist assessments. When compared to two expert interventional cardiologists, DeepCoro achieved lower variability than the clinical reports (19.09%; 95% CI: 18.55–19.58 vs 21.00%; 95% CI: 20.20–21.76, respectively). In addition, DeepCoro can be fine-tuned to a different modality type. When fine-tuned on quantitative coronary angiography assessments, DeepCoro attained an even lower mean absolute error of 7.75% (95% CI: 7.37–8.07), underscoring the reduced variability inherent to this method. This study establishes DeepCoro as an innovative video-based, adaptable tool in coronary artery disease analysis, significantly enhancing the precision and reliability of stenosis assessment.

Details

Title
Evaluation of stenoses using AI video models applied to coronary angiography
Author
Labrecque Langlais, Élodie 1   VIAFID ORCID Logo  ; Corbin, Denis 2 ; Tastet, Olivier 2 ; Hayek, Ahmad 3 ; Doolub, Gemina 3   VIAFID ORCID Logo  ; Mrad, Sebastián 3   VIAFID ORCID Logo  ; Tardif, Jean-Claude 3   VIAFID ORCID Logo  ; Tanguay, Jean-François 3 ; Marquis-Gravel, Guillaume 3   VIAFID ORCID Logo  ; Tison, Geoffrey H. 4   VIAFID ORCID Logo  ; Kadoury, Samuel 5 ; Le, William 5 ; Gallo, Richard 3 ; Lesage, Frederic 6   VIAFID ORCID Logo  ; Avram, Robert 2   VIAFID ORCID Logo 

 Polytechnique Montréal, Department of Electrical Engineering, Montreal, Canada (GRID:grid.183158.6) (ISNI:0000 0004 0435 3292); Montreal Heart Institute, Heartwise (heartwise.ai), Montreal, Canada (GRID:grid.482476.b) (ISNI:0000 0000 8995 9090) 
 Montreal Heart Institute, Heartwise (heartwise.ai), Montreal, Canada (GRID:grid.482476.b) (ISNI:0000 0000 8995 9090); Université de Montréal, Department of Medicine, Montreal Heart Institute, Montreal, Canada (GRID:grid.14848.31) (ISNI:0000 0001 2292 3357) 
 Université de Montréal, Department of Medicine, Montreal Heart Institute, Montreal, Canada (GRID:grid.14848.31) (ISNI:0000 0001 2292 3357) 
 University of California, Department of Medicine, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
 Polytechnique Montréal, Department of Computer Engineering, Montreal, Canada (GRID:grid.183158.6) (ISNI:0000 0004 0435 3292) 
 Polytechnique Montréal, Department of Electrical Engineering, Montreal, Canada (GRID:grid.183158.6) (ISNI:0000 0004 0435 3292); Université de Montréal, Department of Medicine, Montreal Heart Institute, Montreal, Canada (GRID:grid.14848.31) (ISNI:0000 0001 2292 3357) 
Pages
138
Publication year
2024
Publication date
Dec 2024
Publisher
Nature Publishing Group
e-ISSN
23986352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059132574
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.