Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rice is a staple grain crop extensively cultivated in Fujian Province, China. This study examined the impact of high-temperature stress on rice yield and its components, focusing on four representative rice varieties, including early and middle rice grown in Fujian Province. Results indicate significant yield losses, with the most severe reduction of 60.8% observed during the flowering stage of early rice and over 40% during the meiosis and flowering stages of middle rice. High-temperature stress primarily affects early rice yield more at the flowering stage than at the grain-filling stage, whereas in middle rice, it is more severe at the meiosis stage than at the flowering stage. Leveraging historical climatic data spanning the past 20 years, a simulation model for high-temperature stress on rice yield was developed to assess disaster-induced yield loss rates, aiming to enhance prevention and disaster damage assessment for rice under high-temperature stress. Application of the model to four rice planting sites in Fujian Province revealed contrasting temporal changes between loss rates and meteorological yield, with middle rice experiencing more severe damage than early rice. The model’s effectiveness is validated by the strong correspondence between yield loss rate and meteorological yield across different regions, highlighting its robust simulation capabilities.

Details

Title
Simulation Model for Assessing High-Temperature Stress on Rice
Author
Zhou, Haoyang 1   VIAFID ORCID Logo  ; Chen, Xianguan 1 ; Li, Minglu 1 ; Shi, Chunlin 2 ; Jiang, Min 1 

 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (H.Z.); [email protected] (X.C.); [email protected] (M.L.) 
 Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China 
First page
900
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059244866
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.