Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate segmentation of medical images is vital for disease detection and treatment. Convolutional Neural Networks (CNN) and Transformer models are widely used in medical image segmentation due to their exceptional capabilities in image recognition and segmentation. However, CNNs often lack an understanding of the global context and may lose spatial details of the target, while Transformers struggle with local information processing, leading to reduced geometric detail of the target. To address these issues, this research presents a Global-Local Fusion network model (GLFUnet) based on the U-Net framework and attention mechanisms. The model employs a dual-branch network that utilizes ConvNeXt and Swin Transformer to simultaneously extract multi-level features from pathological images. It enhances ConvNeXt’s local feature extraction with spatial and global attention up-sampling modules, while improving Swin Transformer’s global context dependency with channel attention. The Attention Feature Fusion module and skip connections efficiently merge local detailed and global coarse features from CNN and Transformer branches at various scales. The fused features are then progressively restored to the original image resolution for pixel-level prediction. Comprehensive experiments on datasets of stomach and liver cancer demonstrate GLFUnet’s superior performance and adaptability in medical image segmentation, holding promise for clinical analysis and disease diagnosis.

Details

Title
Attention-Based Two-Branch Hybrid Fusion Network for Medical Image Segmentation
Author
Liu, Jie 1   VIAFID ORCID Logo  ; Mao, Songren 2   VIAFID ORCID Logo  ; Pan, Liangrui 3 

 Computer Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China 
 College of Computer Science and Technology, Taiyuan Normal University, Jinzhong 030619, China; [email protected] 
 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; [email protected] 
First page
4073
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059272580
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.