Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Brushless Direct Current (BLDC) motors have seen significant improvements across various electrical applications. The growing focus on motor design research highlights the BLDC motor’s superior efficiency compared to traditional motors, which consume more power. BLDC motors are compact, lightweight, energy-efficient, and easy to control, making them ideal for modern applications. This study aims to enhance BLDC motor design and performance by employing the Taguchi method, Response Surface Methodology (RSM), and Finite Element Method (FEM) for multi-stage optimization. A 26-watt BLDC electric fan motor is the reference model for this study. The Taguchi method helps identify optimization points, guiding further enhancements in the second stage. The study proposes a design with improved output power, torque, and efficiency. The final design achieves a 15% higher energy efficiency than the reference model, with a 10 W increase in output power and a 0.032 Nm increase in maximum torque. The FEM analysis using JMAG software v 21.2 validates the proposed design, which shows improved configurations compared to the reference model, demonstrating the efficiency of the optimization techniques for BLDC motor design.

Details

Title
Multi-Step Design Optimization for the Improvement of an Outer-Rotor Brushless Direct Current Motor
Author
Chun-Yu, Hsiao  VIAFID ORCID Logo  ; Soe Min Htet
First page
4302
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059275946
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.