Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Convolutional neural network (CNN) models were devised and evaluated to classify infrared thermal (IRT) images of pediatric wrist fractures. The images were recorded from 19 participants with a wrist fracture and 21 without a fracture (sprain). The injury diagnosis was by X-ray radiography. For each participant, 299 IRT images of their wrists were recorded. These generated 11,960 images (40 participants × 299 images). For each image, the wrist region of interest (ROI) was selected and fast Fourier transformed (FFT) to obtain a magnitude frequency spectrum. The spectrum was resized to 100 × 100 pixels from its center as this region represented the main frequency components. Image augmentations of rotation, translation and shearing were applied to the 11,960 magnitude frequency spectra to assist with the CNN generalization during training. The CNN had 34 layers associated with convolution, batch normalization, rectified linear unit, maximum pooling and SoftMax and classification. The ratio of images for the training and test was 70:30, respectively. The effects of augmentation and dropout on CNN performance were explored. Wrist fracture identification sensitivity and accuracy of 88% and 76%, respectively, were achieved. The CNN model was able to identify wrist fractures; however, a larger sample size would improve accuracy.

Details

Title
Convolutional Neural Network to Classify Infrared Thermal Images of Fractured Wrists in Pediatrics
Author
Shobayo, Olamilekan 1   VIAFID ORCID Logo  ; Saatchi, Reza 2   VIAFID ORCID Logo  ; Ramlakhan, Shammi 3   VIAFID ORCID Logo 

 Department of Computing, Sheffield Hallam University, Sheffield S1 2NU, UK; [email protected] 
 Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK 
 Emergency Department, Sheffield Children’s Hospital NHS Foundation Trust, Sheffield S10 2TH, UK; [email protected] 
First page
994
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279032
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059386605
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.