Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development height of the water-conducting fracture zone (WCFZ) is crucial for the safe production of coal mines. The back-propagation neural network (BP-NN) can be utilized to forecast the WCFZ height, aiding coal mines in water hazard prevention and control efforts. However, the stochastic generation of initial weights and thresholds in BP-NN usually leads to local optima, which might reduce the prediction accuracy. This study thus invokes the excellent global optimization capability of the Improved Radial Movement Optimization (IRMO) algorithm to optimize BP-NN. The influences of mining thickness, coal seam depth, working width, and hard rock lithology proportion coefficient on the height of WCFZ are investigated through 75 groups of in situ data of WCFZ heights measured in the Jurassic coalfield of the Ordos Basin. Consequently, an IRMO-BP-NN model for predicting WCFZ height in the Jurassic coalfield of the Ordos Basin was constructed. The proposed IRMO-BP-NN model was validated through monitoring data from the 4−2216 working faces of Jianbei Coal Mine, followed by a comparative analysis with empirical formulas and conventional BP-NN models. The relative error of the IRMO-BP-NN prediction model is 4.93%, outperforming both the BP-NN prediction model, the SVR prediction model, and empirical formulas. The results demonstrate that the IRMO-BP-NN model enhances the accuracy of predicting WCFZ height, providing an application foundation for predicting such heights in the Jurassic coalfield of the Ordos Basin and protecting the ecological environment of Ordos Basin mining areas.

Details

Title
Height Prediction of Water-Conducting Fracture Zone in Jurassic Coalfield of Ordos Basin Based on Improved Radial Movement Optimization Algorithm Back-Propagation Neural Network
Author
Gao, Zhiyong; Jin, Liangxing  VIAFID ORCID Logo  ; Liu, Pingting  VIAFID ORCID Logo  ; Wei, Junjie
First page
1602
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059595014
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.