Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Unbonded flexible risers consist of several helical and cylindrical layers, which can undergo large bending deformation and can be installed to different configurations to adapt to harsh marine environments, and is a key equipment in transporting oil and gas resources from Ultra Deep Waters (UDWs) to offshore platforms. The helical interlayer of an unbonded flexible riser makes the structural behavior difficult to predict. In this paper, the axial tensile behavior and the axial tensile ultimate strength of an unbonded flexible riser are studied based on a typical 2.5-inch eight-layer unbonded flexible riser model, and verified through a theoretical method considering the contact between adjacent layers. First, the balance equation of separate layers is deduced by a functional principle, and then the overall theoretical model of an unbonded flexible riser is established considering the geometric relationship between adjacent layers. Then, the numerical model considering the detailed geometric properties of an unbonded flexible riser is established to simulate the axial tensile behavior. Finally, after being verified through the experimental results, the axial tensile stiffness and axial tensile strength of an unboned flexible riser considering the elasticity of the tensile armor layer are studied using the proposed two methods. Additionally, the effect of frictional coefficients is conducted. The numerical and theoretical results show good agreement with the test results, and the friction between adjacent layers would increase the axial tensile stiffness of an unbonded flexible riser.

Details

Title
Axial Tensile Ultimate Strength of an Unbonded Flexible Riser Based on a Numerical Method
Author
Li, Dongya 1 ; Jiang, Wanchao 1 ; Xing, Qingqing 1 ; Liu, Qingsheng 2   VIAFID ORCID Logo 

 Applied Technology College of Soochow University, Suzhou 215000, China; [email protected] (W.J.); [email protected] (Q.X.) 
 School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China; [email protected] 
First page
2286
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059603866
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.