Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Laser bending is a kind of cumulative forming technology and bending efficiency is one of its most important indexes. This study investigates the bending behavior and the microstructure of DP980 steel plates under different laser scanning strategies, using an IPG laser system. Two sets of experiments varied the accumulated line energy density (AED) by altering the laser scanning velocity and number of scans. The results show that, for the single laser scanning process, the bending angle of the plate increases with AED, due to a larger temperature gradient through the thickness direction; however, this relationship is nonlinear. A higher AED led to a sharper initial increase in bending angle, which then plateaued. Under the same AED conditions, the bending angle of the plate undergoing multiple laser scans increases by at least 26% compared to the single one, due to the microstructure changes. It is revealed that the bending efficiency is affected by both the AED and the resultant microstructure evolution in the DP980 steel. Higher AED values and appropriate peak temperatures facilitate better bending behavior due to the formation of uniform martensite and grain refinement. Conversely, excessive peak temperatures can hinder bending due to grain growth.

Details

Title
Effects of Laser Scanning Strategy on Bending Behavior and Microstructure of DP980 Steel
Author
Dong, Wenbin 1 ; Zhang, Yajing 2 ; Le, Bao 3   VIAFID ORCID Logo  ; Shin, Kyoosik 3 

 Department of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 233100, China; Department of Mechatronics Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea 
 Department of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 233100, China 
 Department of Mechatronics Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea 
First page
2415
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059605975
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.