Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Population and tourism growth has increased congestion, collisions, climate harming emissions, and transport inequities in the Okanagan Valley, British Columbia (B.C.), Canada. Surveys indicate a willingness among residents to switch from cars to public transit featuring better service levels and connections. We conducted an analysis on the economic feasibility of an Okanagan Valley Electric Regional Passenger Rail (OVER PR) powered by zero-emission (ZE) Fuel Cell/Battery Hybrid Rail (Hydrail) technology along a 342-km route between Osoyoos, B.C., at the US Border and Kamloops, B.C., the Canadian VIA rail hub. Hydrail passenger light-rail has operated successfully since 2018 in Germany and was demonstrated in Quebec, Canada, in 2023. Technical analyses have confirmed the feasibility in B.C. on steep Highway (Hwy) 97 grades and mountainous weather, with mode shift forecasts in the range of 30%. OVER PR economic analyses were also favorable, with net present value (NPV) = CAD 40 billion (CDN, base year 2023), benefit–cost ratio (BCR) = 9:1, and Return on Investments (IRR) = 33% over 30 years. Subject to additional stakeholder consultations and final design reviews, these results were tested against risks using Monte Carlo Simulation (MCS) and Reference-Class Forecasting (RCF), including worst-case risks such as 70% cost over-runs. OVER PR promises an economic transition to clean energy, sustainable transportation, and more livable communities, benefiting all Valley communities through greater transportation equity.

Details

Title
The Economic Feasibility of (Re-)Introducing Tram-Trains in Canada: Okanagan Valley Electric Regional Passenger Rail
Author
Tye Boray 1 ; Hegazi, Mohamed 1   VIAFID ORCID Logo  ; Busche, Holger 2 ; Lovegrove, Gord 1 

 Faculty of Applied Science, School of Engineering, Okanagan Campus—The University of British Columbia, EME4267—1137 Alumni Ave., Kelowna, BC V1V 1V7, Canada[email protected] (M.H.) 
 Provincial Parliament of Schleswig-Holstein, 24105 Kiel, Germany; [email protected] 
First page
4081
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059694485
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.