Abstract

Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V−1 s−1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.

The electrical properties of nanostructured networks are often dominated by junctions between the particles. Here, Gabett et al. develop transport models and utilise impedance spectroscopy to quantify the factors limiting conduction in these systems.

Details

Title
Understanding how junction resistances impact the conduction mechanism in nano-networks
Author
Gabbett, Cian 1   VIAFID ORCID Logo  ; Kelly, Adam G. 2 ; Coleman, Emmet 1   VIAFID ORCID Logo  ; Doolan, Luke 1 ; Carey, Tian 1   VIAFID ORCID Logo  ; Synnatschke, Kevin 1 ; Liu, Shixin 1   VIAFID ORCID Logo  ; Dawson, Anthony 1 ; O’Suilleabhain, Domhnall 1 ; Munuera, Jose 3   VIAFID ORCID Logo  ; Caffrey, Eoin 1   VIAFID ORCID Logo  ; Boland, John B. 1 ; Sofer, Zdeněk 4   VIAFID ORCID Logo  ; Ghosh, Goutam 5 ; Kinge, Sachin 6 ; Siebbeles, Laurens D. A. 5   VIAFID ORCID Logo  ; Yadav, Neelam 7   VIAFID ORCID Logo  ; Vij, Jagdish K. 7   VIAFID ORCID Logo  ; Aslam, Muhammad Awais 8   VIAFID ORCID Logo  ; Matkovic, Aleksandar 8   VIAFID ORCID Logo  ; Coleman, Jonathan N. 1   VIAFID ORCID Logo 

 CRANN & AMBER Research Centres, Trinity College Dublin, School of Physics, Dublin 2, Ireland (GRID:grid.8217.c) (ISNI:0000 0004 1936 9705) 
 CRANN & AMBER Research Centres, Trinity College Dublin, School of Physics, Dublin 2, Ireland (GRID:grid.8217.c) (ISNI:0000 0004 1936 9705); Universidade NOVA de Lisboa, Campus de Caparica, i3N/CENIMAT, Faculty of Science and Technology, Caparica, Portugal (GRID:grid.10772.33) (ISNI:0000 0001 2151 1713) 
 CRANN & AMBER Research Centres, Trinity College Dublin, School of Physics, Dublin 2, Ireland (GRID:grid.8217.c) (ISNI:0000 0004 1936 9705); University of Oviedo, Department of Physics, Faculty of Sciences, Oviedo, Spain (GRID:grid.10863.3c) (ISNI:0000 0001 2164 6351) 
 University of Chemistry and Technology Prague, Department of Inorganic Chemistry, Prague 6, Czech Republic (GRID:grid.448072.d) (ISNI:0000 0004 0635 6059) 
 Delft University of Technology, Chemical Engineering Department, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740) 
 Toyota Motor Europe, Materials Research & Development, Zaventem, Belgium (GRID:grid.426284.e) (ISNI:0000 0004 0378 0110) 
 Trinity College Dublin 2, Department of Electronic & Electrical Engineering, Dublin 2, Ireland (GRID:grid.8217.c) (ISNI:0000 0004 1936 9705) 
 Montanuniversität Leoben, Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Leoben, Austria (GRID:grid.181790.6) (ISNI:0000 0001 1033 9225) 
Pages
4517
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3060940519
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.