Full text

Turn on search term navigation

© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Biochar application is widely recognized as an effective approach for increasing soil organic carbon (SOC) and mitigating climate change in agroecosystems. However, the effects of biochar application on net accumulations and relative contributions of different SOC sources remain unclear. Here, we explored the effects of biochar application on plant-derived (PDC) and microbial necromass C (MNC) in a 10-year experimental rice–wheat rotation field receiving four different intensities of biochar application (0, 2.25, 11.5, and 22.5 t ha−1 for each crop season), using phospholipid fatty acids (PLFAs), lignin phenols and amino sugars as biomarkers of microbial biomass, PDC and MNC, respectively. Our results showed that biochar application increased SOC content and stock by 32.6%–203% and 26.4%–145%, respectively. Higher biochar application (11.5 and 22.5 t ha−1) increased soil pH, total nitrogen (TN), total phosphorus (TP), SOC/TN, and root biomass. In addition, higher biochar application enhanced bacterial, fungal, and total microbial biomass. Plant lignin phenols and MNC contents significantly increased, whereas their contributions to SOC significantly decreased with the increase in biochar application rates due to the disproportionate increase in PDC and MNC, and SOC. Fungal necromass had a greater contribution to SOC than bacterial necromass. The fungal/bacterial necromass decreased from 2.56 to 2.26 with increasing biochar application rates, because of the higher abundances of bacteria than that of fungi as indicated by PLFAs under higher biochar application rates. Random forest analyses revealed that pH, TP, and SOC/TN were the main factors controlling plant lignin and MNC accumulation. Structural equation modeling revealed that biochar application increased lignin phenols by stimulating root biomass, whereas enhanced MNC accumulation was primarily from increased microbial biomass and lignin phenols. Overall, our findings suggest that biochar application increases the accumulation of the two SOC sources but decreases their contributions to SOC in paddy soils.

Details

Title
Long-term successive biochar application increases plant lignin and microbial necromass accumulation but decreases their contributions to soil organic carbon in rice–wheat cropping system
Author
Chen, Zhaoming 1 ; He, Lili 1   VIAFID ORCID Logo  ; Ma, Jinchuan 1 ; Ma, Junwei 1 ; Ye, Jing 1 ; Yu, Qiaogang 1 ; Zou, Ping 1 ; Sun, Wanchun 1 ; Lin, Hui 1 ; Wang, Feng 1 ; Zhao, Xu 2 ; Wang, Qiang 1   VIAFID ORCID Logo 

 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China 
 State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China 
Section
RESEARCH ARTICLES
Publication year
2024
Publication date
Jun 2024
Publisher
John Wiley & Sons, Inc.
ISSN
17571693
e-ISSN
17571707
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3061170904
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.