Abstract

The discovery of upstream regulatory genes of a gene of interest still remains challenging. Here we applied a scalable computational method to unbiasedly predict candidate regulatory genes of critical transcription factors by searching the whole genome. We illustrated our approach with a case study on the master regulator FOXP3 of human primary regulatory T cells (Tregs). While target genes of FOXP3 have been identified, its upstream regulatory machinery still remains elusive. Our methodology selected five top-ranked candidates that were tested via proof-of-concept experiments. Following knockdown, three out of five candidates showed significant effects on the mRNA expression of FOXP3 across multiple donors. This provides insights into the regulatory mechanisms modulating FOXP3 transcriptional expression in Tregs. Overall, at the genome level this represents a high level of accuracy in predicting upstream regulatory genes of key genes of interest.

Details

Title
Inferring upstream regulatory genes of FOXP3 in human regulatory T cells from time-series transcriptomic data
Author
Magni, Stefano 1   VIAFID ORCID Logo  ; Sawlekar, Rucha 2 ; Capelle, Christophe M. 3   VIAFID ORCID Logo  ; Tslaf, Vera 4 ; Baron, Alexandre 5 ; Zeng, Ni 5 ; Mombaerts, Laurent 1 ; Yue, Zuogong 1 ; Yuan, Ye 6   VIAFID ORCID Logo  ; Hefeng, Feng Q. 5   VIAFID ORCID Logo  ; Gonçalves, Jorge 7   VIAFID ORCID Logo 

 University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Belvaux, Luxembourg (GRID:grid.16008.3f) (ISNI:0000 0001 2295 9843) 
 University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Belvaux, Luxembourg (GRID:grid.16008.3f) (ISNI:0000 0001 2295 9843); Luleå University of Technology, Robotics and Artificial Intelligence, Department of Computer Science, Electrical and Space Engineering, Luleå, Sweden (GRID:grid.6926.b) (ISNI:0000 0001 1014 8699) 
 Luxembourg Institute of Health, Department of Infection and Immunity, Esch-Sur-Alzette, Luxembourg (GRID:grid.451012.3) (ISNI:0000 0004 0621 531X); University of Luxembourg, Faculty of Science, Technology and Medicine, Esch-sur-Alzette, Luxembourg (GRID:grid.16008.3f) (ISNI:0000 0001 2295 9843) 
 Luxembourg Institute of Health, Department of Infection and Immunity, Esch-Sur-Alzette, Luxembourg (GRID:grid.451012.3) (ISNI:0000 0004 0621 531X); University of Luxembourg, Faculty of Science, Technology and Medicine, Esch-sur-Alzette, Luxembourg (GRID:grid.16008.3f) (ISNI:0000 0001 2295 9843); Luxembourg Institute of Health, Transversal Translational Medicine, Strassen, Luxembourg (GRID:grid.451012.3) (ISNI:0000 0004 0621 531X) 
 Luxembourg Institute of Health, Department of Infection and Immunity, Esch-Sur-Alzette, Luxembourg (GRID:grid.451012.3) (ISNI:0000 0004 0621 531X) 
 Huazhong University of Science and Technology, School of Artificial Intelligence and Automation, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
 University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Belvaux, Luxembourg (GRID:grid.16008.3f) (ISNI:0000 0001 2295 9843); University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) 
Pages
59
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20567189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3061555175
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.