It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Fluorinated organic chemicals, such as per- and polyfluorinated alkyl substances (PFAS) and fluorinated pesticides, are both broadly useful and unusually long-lived. To combat problems related to the accumulation of these compounds, microbial PFAS and organofluorine degradation and biosynthesis of less-fluorinated replacement chemicals are under intense study. Both efforts are undermined by the substantial toxicity of fluoride, an anion that powerfully inhibits metabolism. Microorganisms have contended with environmental mineral fluoride over evolutionary time, evolving a suite of detoxification mechanisms. In this perspective, we synthesize emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms and identify best approaches for bioengineering new approaches for degrading and making organofluorine compounds.
Microbial degradation and biosynthesis of fluorinated compounds is a field of increasing importance, but is hampered by the significant toxicity of fluoride. Here authors discuss emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms, providing guidance on how this knowledge can guide future bioengineering approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000 0004 1936 7347)
2 University of Minnesota, Department of Biochemistry, Biophysics & Molecular Biology and Biotechnology Institute, Minneapolis, USA (GRID:grid.17635.36) (ISNI:0000 0004 1936 8657)