Abstract

Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.

One-dimensional van der Waals heterostructures can realize atomically thin transistor junctions. Here, the authors study electron transfer in such layered structures using ultrafast diffraction and spectroscopy as well as theoretical simulations.

Details

Title
Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials
Author
Saida, Yuri 1 ; Gauthier, Thomas 2 ; Suzuki, Hiroo 3   VIAFID ORCID Logo  ; Ohmura, Satoshi 4   VIAFID ORCID Logo  ; Shikata, Ryo 1 ; Iwasaki, Yui 1 ; Noyama, Godai 1 ; Kishibuchi, Misaki 3 ; Tanaka, Yuichiro 3 ; Yajima, Wataru 1 ; Godin, Nicolas 2 ; Privault, Gaël 2 ; Tokunaga, Tomoharu 5 ; Ono, Shota 6 ; Koshihara, Shin-ya 7 ; Tsuruta, Kenji 3   VIAFID ORCID Logo  ; Hayashi, Yasuhiko 3   VIAFID ORCID Logo  ; Bertoni, Roman 2   VIAFID ORCID Logo  ; Hada, Masaki 8   VIAFID ORCID Logo 

 University of Tsukuba, Graduate School of Science and Technology, Tsukuba, Japan (GRID:grid.20515.33) (ISNI:0000 0001 2369 4728) 
 IPR (Institut de Physique de Rennes)—UMR 6251, Univ Rennes, CNRS, Rennes, France (GRID:grid.461893.1) (ISNI:0000 0004 0452 3968) 
 Okayama University, Graduate School of Environmental, Life, Natural Science and Technology, Okayama, Japan (GRID:grid.261356.5) (ISNI:0000 0001 1302 4472) 
 Hiroshima Institute of Technology, Faculty of Engineering, Hiroshima, Japan (GRID:grid.417545.6) (ISNI:0000 0001 0665 883X) 
 Nagoya University, Graduate School of Engineering, Nagoya, Japan (GRID:grid.27476.30) (ISNI:0000 0001 0943 978X) 
 Tohoku University, Institute for Materials Research, Sendai, Japan (GRID:grid.69566.3a) (ISNI:0000 0001 2248 6943) 
 Tokyo Institute of Technology, School of Science, Tokyo, Japan (GRID:grid.32197.3e) (ISNI:0000 0001 2179 2105) 
 University of Tsukuba, Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), Tsukuba, Japan (GRID:grid.20515.33) (ISNI:0000 0001 2369 4728) 
Pages
4600
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3062308504
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.