It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work proposes a spiral filter-based diplexer antenna for dual-band full-duplex 5G application in C-band. The shared radiator is formed by a cross-shape Yagi-Uda antenna. The dual-band full-duplex characteristic is obtained by applying a diplexer with two different band-stop filters (BSFs) based on a high-order rectangular spiral-shaped open-stub filter. The proposed diplexer antenna is suitable for modern 5G full-duplex communication system applications with a small frequency ratio and high isolation between two ports by applying a Wilkinson power divider. The diplexer antenna is designed, fabricated, and measured, showing good performance of channel isolations of 27 dB/23 dB and the antenna gain of 4.7 dBi/4.2 dBi at two operation bands from 3.56 GHz to 3.68 GHz and from 3.72 GHz to 3.83 GHz covering the required 100 MHz maximum bandwidth in C-band while its frequency ratio is only 1.04.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer