Full text

Turn on search term navigation

Copyright © 2024, Arango et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: This study aims to compare the performance of ChatGPT-3.5 (GPT-3.5) and ChatGPT-4 (GPT-4) on the American Society for Surgery of the Hand (ASSH) Self-Assessment Examination (SAE) to determine their potential as educational tools.

Methods: This study assessed the proportion of correct answers to text-based questions on the 2021 and 2022 ASSH SAE between untrained ChatGPT versions. Secondary analyses assessed the performance of ChatGPT based on question difficulty and question category. The outcomes of ChatGPT were compared with the performance of actual examinees on the ASSH SAE.

Results: A total of 238 questions were included in the analysis. Compared with GPT-3.5, GPT-4 provided significantly more correct answers overall (58.0% versus 68.9%, respectively; P = 0.013), on the 2022 SAE (55.9% versus 72.9%; P = 0.007), and more difficult questions (48.8% versus 63.6%; P = 0.02). In a multivariable logistic regression analysis, correct answers were predicted by GPT-4 (odds ratio [OR], 1.66; P = 0.011), increased question difficulty (OR, 0.59; P = 0.009), Bone and Joint questions (OR, 0.18; P < 0.001), and Soft Tissue questions (OR, 0.30; P = 0.013). Actual examinees scored a mean of 21.6% above GPT-3.5 and 10.7% above GPT-4. The mean percentage of correct answers by actual examinees was significantly higher for correct (versus incorrect) ChatGPT answers.

Conclusions: GPT-4 demonstrated improved performance over GPT-3.5 on the ASSH SAE, especially on more difficult questions. Actual examinees scored higher than both versions of ChatGPT, but the margin was cut in half by GPT-4.

Details

Title
The Performance of ChatGPT on the American Society for Surgery of the Hand Self-Assessment Examination
Author
Arango, Sebastian D; Flynn, Jason C; Zeitlin, Jacob; Lorenzana, Daniel J; Miller, Andrew J; Wilson, Matthew S; Strohl, Adam B; Weiss, Lawrence E; Weir, Tristan B
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2024
Publication date
2024
Publisher
Springer Nature B.V.
e-ISSN
21688184
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3062846468
Copyright
Copyright © 2024, Arango et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.