Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ionospheric electrodynamics is a problem of mechanical stress balance mediated by electromagnetic forces. Joule heating (the total rate of frictional heating of thermospheric gases and ionospheric plasma) and ionospheric Hall and Pedersen conductances comprise three of the most basic descriptors of this problem. More than half a century after identification of their central role in ionospheric electrodynamics, several important questions about these quantities, including the degree to which they exhibit hemispheric symmetry under reversal of the sign of dipole tilt and the sign of the y component of the interplanetary magnetic field (so-called “mirror symmetry”), remain unanswered. While global estimates of these key parameters can be obtained by combining existing empirical models, one often encounters some frustrating sources of uncertainty: the measurements from which such models are derived, usually magnetic field and electric field or ion drift measurements, are typically measured separately and do not necessarily align. The models to be combined moreover often use different input parameters, different assumptions about hemispheric symmetry, and/or different coordinate systems. We eliminate these sources of uncertainty in model predictions of electromagnetic work JE (in general not equal to Joule heating ηJ2) and ionospheric conductances by combining two new empirical models of the high-latitude ionospheric electric potential and ionospheric currents that are derived in a mutually consistent fashion: these models do not assume any form of symmetry between the two hemispheres; are based on Apex magnetic coordinates (denoted Apex), spherical harmonics, and the same model input parameters; and are derived exclusively from convection and magnetic field measurements made by the Swarm and CHAMP satellites. The model source code is open source and publicly available. Comparison of high-latitude distributions of electromagnetic work in each hemisphere as functions of dipole tilt and interplanetary magnetic field clock angle indicates that the typical assumption of mirror symmetry is largely justified. Model predictions of ionospheric Hall and Pedersen conductances exhibit a degree of symmetry, but clearly asymmetric responses to dipole tilt and solar wind driving conditions are also identified. The distinction between electromagnetic work and Joule heating allows us to identify where and under what conditions the assumption that the neutral wind corotates with the Earth is not likely to be physically consistent with predicted Hall and Pedersen conductances.

Details

Title
Does high-latitude ionospheric electrodynamics exhibit hemispheric mirror symmetry?
Author
Spencer Mark Hatch 1   VIAFID ORCID Logo  ; Vanhamäki, Heikki 2   VIAFID ORCID Logo  ; Laundal, Karl Magnus 1 ; Jone Peter Reistad 1   VIAFID ORCID Logo  ; Burchill, Johnathan K 3 ; Levan Lomidze 3 ; Knudsen, David J 3   VIAFID ORCID Logo  ; Madelaire, Michael 1 ; Tesfaw, Habtamu 2 

 Department of Physics and Technology, University of Bergen, Bergen, Norway 
 Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland 
 Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada 
Pages
229-253
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
0992-7689
e-ISSN
14320576
Source type
Scholarly Journal
Language of publication
French; English
ProQuest document ID
3064103637
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.