It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cloud environment is a virtual, online, and distributed computing environment that provides users with large-scale services. And cloud monitoring plays an integral role in protecting infrastructures in the cloud environment. Cloud monitoring systems need to closely monitor various KPIs of cloud resources, to accurately detect anomalies. However, due to the complexity and highly dynamic nature of the cloud environment, anomaly detection for these KPIs with various patterns and data quality is a huge challenge, especially those massive unlabeled data. Besides, it’s also difficult to improve the accuracy of the existing anomaly detection methods. To solve these problems, we propose a novel Dynamic Graph Transformer based Parallel Framework (DGT-PF) for efficiently detect system anomalies in cloud infrastructures, which utilizes Transformer with anomaly attention mechanism and Graph Neural Network (GNN) to learn the spatio-temporal features of KPIs to improve the accuracy and timeliness of model anomaly detection. Specifically, we propose an effective dynamic relationship embedding strategy to dynamically learn spatio-temporal features and adaptively generate adjacency matrices, and soft cluster each GNN layer through Diffpooling module. In addition, we also use nonlinear neural network model and AR-MLP model in parallel to obtain better detection accuracy and improve detection performance. The experiment shows that the DGT-PF framework have achieved the highest F1-Score on 5 public datasets, with an average improvement of 21.6% compared to 11 anomaly detection models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Computer and Software Engineering, Xihua University, Chengdu, China (GRID:grid.412983.5) (ISNI:0000 0000 9427 7895)
2 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China (GRID:grid.54549.39) (ISNI:0000 0004 0369 4060); Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China (GRID:grid.54549.39) (ISNI:0000 0004 0369 4060)