It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hot and dry conditions pose a substantial risk to global crops. The frequency of co-occurring heat and drought depends on land–atmosphere coupling, which can be quantified by the correlation between temperature and evapotranspiration (r(T, ET)). We find that the majority of global croplands have experienced declines in r(T, ET) over the past ∼40 years, indicating a shift to a more moisture-limited state. In some regions, especially Europe, the sign of r(T, ET) has flipped from positive to negative, indicating a transition from energy-limitation to moisture-limitation and suggesting a qualitative shift in the local climate regime. We associate stronger declines in r(T, ET) with faster increases in annual maximum temperatures and larger declines in soil moisture and ET during hot days. Our results suggest that shifts towards stronger land–atmosphere coupling have already increased the sensitivity of crop yields to temperature in much of the world by 12%–37%, as hot days are not only hotter, but also more likely to be concurrently dry.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Geography and the Environment, Syracuse University , Syracuse, NY, United States of America
2 Department of Geography, Dartmouth College , Hanover, NH, United States of America; Neukom Institute, Dartmouth College , Hanover, NH, United States of America