Abstract

Two-dimensional topological insulators hosting the quantum spin Hall effect have application potential in dissipationless electronics. To observe the quantum spin Hall effect at elevated temperatures, a wide band gap is indispensable to efficiently suppress bulk conduction. Yet, most candidate materials exhibit narrow or even negative band gaps. Here, via elegant control of van der Waals epitaxy, we have successfully grown monolayer ZrTe5 on a bilayer graphene/SiC substrate. The epitaxial ZrTe5 monolayer crystalizes in two allotrope isomers with different intralayer alignments of ZrTe3 prisms. Our scanning tunneling microscopy/spectroscopy characterization unveils an intrinsic full band gap as large as 254 meV and one-dimensional edge states localized along the periphery of the ZrTe5 monolayer. First-principles calculations further confirm that the large band gap originates from strong spin−orbit coupling, and the edge states are topologically nontrivial. These findings thus provide a highly desirable material platform for the exploration of the high-temperature quantum spin Hall effect.

Quantum spin Hall materials hold great potential for future nanoelectronics. Here, authors synthesize a potential host system — monolayer ZrTe5 — and demonstrate it possesses a band gap wide enough for potential room-temperature applications.

Details

Title
Realization of monolayer ZrTe5 topological insulators with wide band gaps
Author
Xu, Yong-Jie 1 ; Cao, Guohua 2 ; Li, Qi-Yuan 1 ; Xue, Cheng-Long 1 ; Zhao, Wei-Min 1 ; Wang, Qi-Wei 1 ; Dou, Li-Guo 1 ; Du, Xuan 1 ; Meng, Yu-Xin 1 ; Wang, Yuan-Kun 1 ; Gao, Yu-Hang 1 ; Jia, Zhen-Yu 1 ; Li, Wei 3 ; Ji, Lianlian 3 ; Li, Fang-Sen 3   VIAFID ORCID Logo  ; Zhang, Zhenyu 4   VIAFID ORCID Logo  ; Cui, Ping 4   VIAFID ORCID Logo  ; Xing, Dingyu 5 ; Li, Shao-Chun 6   VIAFID ORCID Logo 

 Nanjing University, National Laboratory of Solid State Microstructures, School of Physics, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
 University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639) 
 Chinese Academy of Sciences, Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); Hefei National Laboratory, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639) 
 Nanjing University, National Laboratory of Solid State Microstructures, School of Physics, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X); Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
 Nanjing University, National Laboratory of Solid State Microstructures, School of Physics, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X); Hefei National Laboratory, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X); Nanjing University, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
Pages
4784
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3064763026
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.