Full text

Turn on search term navigation

Copyright © 2024 Nasreen Begum et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Aluminum can be found in water and vegetables in the form of the trivalent ion (Al3+), which can potentially contaminate food and water. Overconsumption of aluminum can lead to serious health problems in humans. Therefore, there is a need for an economical and simple procedure to detect the presence of aluminum. In this study, we synthesized a conjugate of Grewia asiatica extract with silver nanoparticles. The nanoparticle-stabilized fruit extract of Grewia asiatica was found to be an extremely selective sensor of Al3+ in tap water, DI water, industrial wastewater, and human blood plasma. We characterized the Grewia asiatica-conjugated silver nanoparticles (GA-AgNPs) using UV-visible, SEM, and AFM techniques and found that they were stable in an extensive pH range and different electrolyte concentrations up to 10 M NaCl. The GA-AgNPs were circular in shape with typical particle sizes of 65–97 nm. We inspected the photo physical properties of GA-AgNPs concerning metallic ions using UV-visible spectroscopy and found that they were highly selective for Al3+ ions, with no interfering ions detected in competitive experimentation. The absorption intensity of GA-AgNPs was directly related to Al3+ concentration over a wide range of concentrations (6.25–500 μM). Jobs plot experiment displayed 1 : 1 binding stoichiometry between GA-AgNPs, and Al3+. Additionally, GA-AgNPs were effectively utilized for the recognition of Al3+ in laboratory tap water, DI water, industrial wastewater, and human blood plasma.

Details

Title
Synthesis and Characterization of Grewia asiatica-Stabilized Silver Nanoparticle as a Selective Probe for Al+3 in Tap, Deionized, Industrial Waste Water and Human Blood Plasma
Author
Begum, Nasreen 1   VIAFID ORCID Logo  ; Itrat Anis 2 ; Haider, Shazia 3 ; Mallick, Tabinda Zarreen 4 ; Muhammad Iqbal Chaudhary 5 

 Department of Chemistry, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan 
 Department of Chemistry, University of Karachi, Karachi 75270, Pakistan 
 Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan 
 Department of Pharmaceutical Chemistry, Jinnah Sindh Medical University, Karachi, Pakistan 
 H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan 
Editor
Cristina Femoni
Publication year
2024
Publication date
2024
Publisher
John Wiley & Sons, Inc.
ISSN
20909063
e-ISSN
20909071
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3065746616
Copyright
Copyright © 2024 Nasreen Begum et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/