Abstract

An antiferromagnet emits spin currents when time-reversal symmetry is broken. This is typically achieved by applying an external magnetic field below and above the spin-flop transition or by optical pumping. In this work we apply optical pump-THz emission spectroscopy to study picosecond spin pumping from metallic FeRh as a function of temperature. Intriguingly we find that in the low-temperature antiferromagnetic phase the laser pulse induces a large and coherent spin pumping, while not crossing into the ferromagnetic phase. With temperature and magnetic field dependent measurements combined with atomistic spin dynamics simulations we show that the antiferromagnetic spin-lattice is destabilised by the combined action of optical pumping and picosecond spin-biasing by the conduction electron population, which results in spin accumulation. We propose that the amplitude of the effect is inherent to the nature of FeRh, particularly the Rh atoms and their high spin susceptibility. We believe that the principles shown here could be used to produce more effective spin current emitters. Our results also corroborate the work of others showing that the magnetic phase transition begins on a very fast picosecond timescale, but this timescale is often hidden by measurements which are confounded by the slower domain dynamics.

The authors measure picosecond spin pumping in FeRh as a function of temperature by optical pump-THz emission spectroscopy. In the antiferromagnetic phase of FeRh enhanced spin pumping above the value measured in the ferromagnetic phase is observed.

Details

Title
Ultra-high spin emission from antiferromagnetic FeRh
Author
Hamara, Dominik 1 ; Strungaru, Mara 2   VIAFID ORCID Logo  ; Massey, Jamie R. 3   VIAFID ORCID Logo  ; Remy, Quentin 4   VIAFID ORCID Logo  ; Chen, Xin 5   VIAFID ORCID Logo  ; Nava Antonio, Guillermo 1   VIAFID ORCID Logo  ; Alves Santos, Obed 1   VIAFID ORCID Logo  ; Hehn, Michel 6   VIAFID ORCID Logo  ; Evans, Richard F. L. 2   VIAFID ORCID Logo  ; Chantrell, Roy W. 2   VIAFID ORCID Logo  ; Mangin, Stéphane 7   VIAFID ORCID Logo  ; Ducati, Caterina 5   VIAFID ORCID Logo  ; Marrows, Christopher H. 8   VIAFID ORCID Logo  ; Barker, Joseph 8   VIAFID ORCID Logo  ; Ciccarelli, Chiara 1   VIAFID ORCID Logo 

 University of Cambridge, Department of Physics, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) 
 University of York, School of Physics, Engineering and Technology, York, UK (GRID:grid.5685.e) (ISNI:0000 0004 1936 9668) 
 University of Leeds, School of Physics and Astronomy, Leeds, UK (GRID:grid.9909.9) (ISNI:0000 0004 1936 8403); ETH Zurich, Laboratory for Mesoscopic Systems, Department of Materials, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780); Paul Scherrer Institute, Villigen PSI, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501) 
 Freie Universität Berlin, Department of Physics, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836) 
 University of Cambridge, Department of Materials Science and Metallurgy, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) 
 Université de Lorraine, CNRS, IJL, Nancy, France (GRID:grid.29172.3f) (ISNI:0000 0001 2194 6418) 
 Université de Lorraine, Institut Jean Lamour (UMR 7198), Vandoeuvre-lès-Nancy, France (GRID:grid.29172.3f) (ISNI:0000 0001 2194 6418) 
 University of Leeds, School of Physics and Astronomy, Leeds, UK (GRID:grid.9909.9) (ISNI:0000 0004 1936 8403) 
Pages
4958
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3066598926
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.