Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent decades, the use of nanotechnology has increased in many disciplines. Specifically, in the concrete industry, nanotechnology has been used to develop more eco-efficient solutions. There is a rapidly growing interest in using nanoparticles in concrete to tackle environmental impacts. Among the nanoparticles investigated, zinc oxide (ZnO) shows great potential because of its material properties, such as reactivity, non-toxicity, a hard and rigid structure, photocatalytic and photoluminescence properties, and chemical, electrical, and thermal stabilities. This paper focuses on the analysis of the effect of ZnO nanoparticles in lightweight concrete at different concentrations (0.5, 1, 1.5, and 2.0 wt%) using two different methods including (i) addition and (ii) partial substitution for cement. Mechanical properties are determined by compressive strength tests. Chemical and morphological characterization is performed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. This study reveals that an increase in the percentage of ZnO nanoparticles as a substitute for cement directly decreases the compressive strength of lightweight concrete. For ZnO nanoparticles in the addition method, compressive strength is 10% lower than in the control specimens. However, the conclusions indicate constant compressive strength for all ZnO nanoparticle concentrations in the addition method.

Details

Title
Assessment of Lightweight Concrete Properties with Zinc Oxide Nanoparticles: Structural and Morphological Analyses
Author
Gonzalez Garcia, Ana Silvia 1 ; Tomas Silva Klein, Luis 1 ; Victor Vega Martinez 2 ; Mar Alonso Martinez 1   VIAFID ORCID Logo  ; del Coz-Díaz, Juan José 1   VIAFID ORCID Logo 

 GICONSIME Research Group, University of Oviedo, 33204 Gijón, Spain; [email protected] (L.T.S.K.); [email protected] (M.A.M.); [email protected] (J.J.d.C.-D.) 
 Laboratory of Nanoporous Membranes, Scientific-Technical Services of the University of Oviedo, Campus El Cristo s/n, 33006 Oviedo, Spain; [email protected] 
First page
4413
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067412750
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.