Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Being able to express broad families of equivariant or invariant attributed graph functions is a popular measuring stick of whether graph neural networks should be employed in practical applications. However, it is equally important to find deep local minima of losses (i.e., produce outputs with much smaller loss values compared to other minima), even when architectures cannot express global minima. In this work we introduce the architectural property of attracting optimization trajectories to local minima as a means of achieving smaller loss values. We take first steps in satisfying this property for losses defined over attributed undirected unweighted graphs with an architecture called universal local attractor (ULA). This refines each dimension of end-to-end-trained node feature embeddings based on graph structure to track the optimization trajectories of losses satisfying some mild conditions. The refined dimensions are then linearly pooled to create predictions. We experiment on 11 tasks, from node classification to clique detection, on which ULA is comparable with or outperforms popular alternatives of similar or greater theoretical expressive power.

Details

Title
Universal Local Attractors on Graphs
Author
Krasanakis, Emmanouil  VIAFID ORCID Logo  ; Papadopoulos, Symeon  VIAFID ORCID Logo  ; Kompatsiaris, Ioannis  VIAFID ORCID Logo 
First page
4533
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067413161
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.