Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A body may have a structural, thermal, electromagnetic or optical role. In wave propagation, many models are described for transmission problems, whose solutions are defined in two or more domains. In this paper, we consider an inverse source hyperbolic problem on disconnected intervals, using solution point constraints. Applying a transform method, we reduce the inverse problems to direct ones, which are studied for well-posedness in special weighted Sobolev spaces. This means that the inverse problem is said to be well posed in the sense of Tikhonov (or conditionally well posed). The main aim of this study is to develop a finite difference method for solution of the transformed hyperbolic problems with a non-local differential operator and initial conditions. Numerical test examples are also analyzed.

Details

Title
Numerical Recovering of Space-Dependent Sources in Hyperbolic Transmission Problems
Author
Koleva, Miglena N 1   VIAFID ORCID Logo  ; Vulkov, Lubin G 2 

 Department of Mathematics, Faculty of Natural Sciences and Education, “Angel Kanchev” University of Ruse, 8 Studentska Str., 7017 Ruse, Bulgaria 
 Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, “Angel Kanchev” University of Ruse, 8 Studentska Str., 7017 Ruse, Bulgaria; [email protected] 
First page
1748
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067417972
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.