Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aluminium can benefit from the high-speed forming technique known as electromagnetic forming (EMF). EMF is increasingly used in automotive applications as a result of this capability. This technology depends on Lorentz force (Magnetic force) in the practical forming application which relies on different process parameters like forming a coil. A finite element model for the EMF process is built and studied in this work using the finite element analysis software ANSYS 2022 R1. The affecting process parameters are investigated using the Design of Experiments (DOE) approach. Response Surface Methodology (RSM) of the DOE approach is used by taking process parameters such as coil size, gap, and current density into account. The number of experiments is reduced by using Central Composite Design (CCD), an RSM model. To determine the optimal level of parameters, a magnetic force optimization study is carried out. The parameters of the EMF process (e.g., magnetic force) are investigated through a developed 2D finite element model and validated with available literature.

Details

Title
Finite Element Analysis of Electromagnetic Forming Process and Optimization of Process Parameters Using RSM
Author
Satonkar, Nilesh 1 ; Venkatachalam, Gopalan 2   VIAFID ORCID Logo  ; Shenbaga Velu Pitchumani 1   VIAFID ORCID Logo 

 School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, India; [email protected] (N.S.); [email protected] (S.V.P.) 
 Centre for Innovation and Product Development, Vellore Institute of Technology (VIT), Chennai 600127, India 
First page
1622
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067418800
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.