Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Light-field video provides a detailed representation of scenes captured from different perspectives. This results in a visualisation modality that enhances the immersion and engagement of the viewers with the depicted environment. In order to perform research on compression, transmission and signal processing of light field data, datasets with light-field contents of different categories and acquired with different modalities are required. In particular, the development of machine learning models for quality assessment and for light-field processing, including the generation of new views, require large amounts of data. Most existing datasets consist of static scenes and, in many cases, synthetic contents. This paper presents a novel light-field plenoptic video dataset, KULFR8, involving six real-world scenes with moving objects and 336 distorted light-field videos derived from the original contents; in total, the original scenes in the dataset contain 1800 distinctive frames, with angular resolution of 5×5 with and total spatial resolution of 9600×5400 pixels (considering all the views); overall, the dataset consists of 45,000 different views with spatial resolution of 1920×1080 pixels. We analyse the content characteristics based on the dimensions of the captured objects and via the acquired videos using the central views extracted from each quilted frame. Additionally, we encode and decode the contents using various video encoders across different bitrate ranges. For quality assessments, we consider all the views, utilising frames measuring 9600×5400 pixels, and employ two objective quality metrics: PSNR and SSIM.

Details

Title
A Light-Field Video Dataset of Scenes with Moving Objects Captured with a Plenoptic Video Camera
Author
Javidi, Kamran  VIAFID ORCID Logo  ; Martini, Maria G  VIAFID ORCID Logo 
First page
2223
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067422942
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.