Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most logit-based knowledge distillation methods transfer soft labels from the teacher model to the student model via Kullback–Leibler divergence based on softmax, an exponential normalization function. However, this exponential nature of softmax tends to prioritize the largest class (target class) while neglecting smaller ones (non-target classes), leading to an oversight of the non-target classes’s significance. To address this issue, we propose Non-Target-Class-Enhanced Knowledge Distillation (NTCE-KD) to amplify the role of non-target classes both in terms of magnitude and diversity. Specifically, we present a magnitude-enhanced Kullback–Leibler (MKL) divergence multi-shrinking the target class to enhance the impact of non-target classes in terms of magnitude. Additionally, to enrich the diversity of non-target classes, we introduce a diversity-based data augmentation strategy (DDA), further enhancing overall performance. Extensive experimental results on the CIFAR-100 and ImageNet-1k datasets demonstrate that non-target classes are of great significance and that our method achieves state-of-the-art performance across a wide range of teacher–student pairs.

Details

Title
NTCE-KD: Non-Target-Class-Enhanced Knowledge Distillation
Author
Li, Chuan  VIAFID ORCID Logo  ; Teng, Xiao  VIAFID ORCID Logo  ; Ding, Yan  VIAFID ORCID Logo  ; Long, Lan  VIAFID ORCID Logo 
First page
3617
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067438899
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.