Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Triboelectric nanogenerators (TENGs) have emerged as viable micro power sources for an array of applications. Since their inception in 2012, TENGs have been the subject of significant advancements in terms of structural design and the development of friction materials. Despite these advancements, the complexity of their structural designs and the use of costly friction materials hinder their practical application. This study introduces a simplified TENG model utilizing an economical composite film of fullerene carbon soot (FS)-doped polydimethylsiloxane (PDMS) (FS-TENG). It confirms the FS-TENG’s ability to convert mechanical energy into electrical energy, as demonstrated through experimental validation. The generated electricity by the FS-TENG can power devices such as light-emitting diodes (LEDs), digital watches, kitchen timers, and sports stopwatches, highlighting its efficiency. This research enhances the development of TENGs featuring low-cost, streamlined structures for sustainable and autonomous energy sensing applications.

Details

Title
The Preparation of a Low-Cost, Structurally Simple Triboelectric Nanogenerator Based on Fullerene Carbon Soot-Doped Polydimethylsiloxane Composite Film
Author
Yang, Shujie 1 ; Zhao, Wen 2   VIAFID ORCID Logo  ; Tolochko, Oleg 1 ; Larionova, Tatiana 1 

 Department of Physics and Materials Technology, Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia; [email protected] (S.Y.); 
 Department of Mechatronics Engineering, College of Mechanical and Electrical Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China 
First page
2470
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067505069
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.