Abstract

Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon – the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.

Systems comprising water and hydrophobic cavities, with scales ranging from nanometres to millimetres, are shown to expand upon compression, an unusual mechanical property of technological and biological relevance known as negative compressibility.

Details

Title
Bubbles enable volumetric negative compressibility in metastable elastocapillary systems
Author
Caprini, Davide 1 ; Battista, Francesco 2   VIAFID ORCID Logo  ; Zajdel, Paweł 3   VIAFID ORCID Logo  ; Di Muccio, Giovanni 2   VIAFID ORCID Logo  ; Guardiani, Carlo 2   VIAFID ORCID Logo  ; Trump, Benjamin 4 ; Carter, Marcus 4 ; Yakovenko, Andrey A. 5 ; Amayuelas, Eder 6 ; Bartolomé, Luis 6   VIAFID ORCID Logo  ; Meloni, Simone 7   VIAFID ORCID Logo  ; Grosu, Yaroslav 8   VIAFID ORCID Logo  ; Casciola, Carlo Massimo 2   VIAFID ORCID Logo  ; Giacomello, Alberto 2   VIAFID ORCID Logo 

 Istituto Italiano di Tecnologia, Center for Life Nano- & Neuro-Science, Rome, Italy (GRID:grid.25786.3e) (ISNI:0000 0004 1764 2907) 
 Sapienza Università di Roma, Dipartimento di Ingegneria Meccanica e Aerospaziale, Rome, Italy (GRID:grid.7841.a) 
 University of Silesia, A. Chełkowski Institute of Physics, Chorzów, Poland (GRID:grid.11866.38) (ISNI:0000 0001 2259 4135) 
 National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, USA (GRID:grid.94225.38) (ISNI:000000012158463X) 
 Argonne National Laboratory, X-Ray Science Division, Advanced Photon Source, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 Basque Research and Technology Alliance (BRTA), Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Vitoria-Gasteiz, Spain (GRID:grid.424082.8) (ISNI:0000 0004 1761 1094) 
 Università degli Studi di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Ferrara, Italy (GRID:grid.8484.0) (ISNI:0000 0004 1757 2064) 
 Basque Research and Technology Alliance (BRTA), Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Vitoria-Gasteiz, Spain (GRID:grid.424082.8) (ISNI:0000 0004 1761 1094); University of Silesia, Institute of Chemistry, Katowice, Poland (GRID:grid.11866.38) (ISNI:0000 0001 2259 4135) 
Pages
5076
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067563311
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.