You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2012. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Introduction
HIV-positive patients receiving combination antiretroviral therapy (cART) frequently experience metabolic complications such as dyslipidemia and insulin resistance, as well as lipodystrophy, increasing the risk of cardiovascular disease (CVD) and diabetes mellitus (DM). Rates of DM and other glucose-associated disorders among HIV-positive patients have been reported to range between 2 and 14%, and in an ageing HIV-positive population, the prevalence of DM is expected to continue to increase. This study aims to develop a model to predict the short-term (six-month) risk of DM in HIV-positive populations and to compare the existing models developed in the general population.
Methods
All patients recruited to the Data Collection on Adverse events of Anti-HIV Drugs (D:A:D) study with follow-up data, without prior DM, myocardial infarction or other CVD events and with a complete DM risk factor profile were included. Conventional risk factors identified in the general population as well as key HIV-related factors were assessed using Poisson-regression methods. Expected probabilities of DM events were also determined based on the Framingham Offspring Study DM equation. The D:A:D and Framingham equations were then assessed using an internal-external validation process; area under the receiver operating characteristic (AUROC) curve and predicted DM events were determined.
Results
Of 33,308 patients, 16,632 (50%) patients were included, with 376 cases of new onset DM during 89,469 person-years (PY). Factors predictive of DM included higher glucose, body mass index (BMI) and triglyceride levels, and older age. Among HIV-related factors, recent CD4 counts of<200 cells/µL and lipodystrophy were predictive of new onset DM. The mean performance of the D:A:D and Framingham equations yielded AUROC of 0.894 (95% CI: 0.849, 0.940) and 0.877 (95% CI: 0.823, 0.932), respectively. The Framingham equation over-predicted DM events compared to D:A:D for lower glucose and lower triglycerides, and for BMI levels below 25 kg/m2.
Conclusions
The D:A:D equation performed well in predicting the short-term onset of DM in the validation dataset and for specific subgroups provided better estimates of DM risk than the Framingham.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 AHOD, The Kirby Institute, University of New South Wales, Sydney, Australia
2 Copenhagen HIV Programme (CHIP), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
3 Nice Cohort, CHU Nice Hopital de l'Archet, Nice, France
4 SHCS, Division of Infectious Diseases, University Hospital, Zurich, Switzerland
5 Saint-Pierre Cohort, CHU Saint-Pierre Hospital, Brussels, Belgium
6 INSERM U897, ISPED, Université Victor Segalen Bordeaux 2, Bordeaux, France
7 ATHENA, HIV Monitoring Foundation, Academic Medical Center, Amsterdam, the Netherlands
8 CPPRA Columbia University/Harlem Hospital New York, NY, USA
9 ICONA Dipartimento di Medicina, Chirurgia e Odontoiatria, Clinica di Malattie Infettive e Tropicali, Azienda Ospedaliera-Polo Universitario San Paolo, Milano, Italy
10 Nice Cohort, CHU Nice Hopital de l'Archet, Nice, France; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark