Full text

Turn on search term navigation

© 2023 Häkkinen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

More species live outside their native range than at any point in human history. Yet, there is little understanding of the geographic regions that will be threatened if these species continue to spread, nor of whether they will spread. We predict the world’s terrestrial regions to which 833 naturalised plants, birds, and mammals are most imminently likely to spread, and investigate what factors have hastened or slowed their spread to date. There is huge potential for further spread of naturalised birds in North America, mammals in Eastern Europe, and plants in North America, Eastern Europe, and Australia. Introduction history, dispersal, and the spatial distribution of suitable areas are more important predictors of species spread than traits corresponding to habitat usage or biotic interactions. Natural dispersal has driven spread in birds more than in plants. Whether these taxa continue to spread more widely depends partially on connectivity of suitable environments. Plants show the clearest invasion lag, and the putative importance of human transportation indicates opportunities to slow their spread. Despite strong predictive effects, questions remain, particularly why so many birds in North America do not occupy climatically suitable areas close to their existing ranges.

Details

Title
Global terrestrial invasions: Where naturalised birds, mammals, and plants might spread next and what affects this process
Author
Henry Häkkinen Current address: Institute of Zoology, Zoological Society of London, London, United Kingdom  VIAFID ORCID Logo  ; Hodgson, Dave; Early, Regan  VIAFID ORCID Logo 
First page
e3002361
Section
Short Reports
Publication year
2023
Publication date
Nov 2023
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069176940
Copyright
© 2023 Häkkinen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.