Full text

Turn on search term navigation

© 2023 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cell death resistance is a hallmark of tumor cells that drives tumorigenesis and drug resistance. Targeting cell death resistance-related genes to sensitize tumor cells and decrease their cell death threshold has attracted attention as a potential antitumor therapeutic strategy. However, the underlying mechanism is not fully understood. Recent studies have reported that NeuroD1, first discovered as a neurodifferentiation factor, is upregulated in various tumor cells and plays a crucial role in tumorigenesis. However, its involvement in tumor cell death resistance remains unknown. Here, we found that NeuroD1 was highly expressed in hepatocellular carcinoma (HCC) cells and was associated with tumor cell death resistance. We revealed that NeuroD1 enhanced HCC cell resistance to ferroptosis, a type of cell death caused by aberrant redox homeostasis that induces lipid peroxide accumulation, leading to increased HCC cell viability. NeuroD1 binds to the promoter of glutathione peroxidase 4 (GPX4), a key reductant that suppresses ferroptosis by reducing lipid peroxide, and activates its transcriptional activity, resulting in decreased lipid peroxide and ferroptosis. Subsequently, we showed that NeuroD1/GPX4-mediated ferroptosis resistance was crucial for HCC cell tumorigenic potential. These findings not only identify NeuroD1 as a regulator of tumor cell ferroptosis resistance but also reveal a novel molecular mechanism underlying the oncogenic function of NeuroD1. Furthermore, our findings suggest the potential of targeting NeuroD1 in antitumor therapy.

Details

Title
NeuroD1-GPX4 signaling leads to ferroptosis resistance in hepatocellular carcinoma
Author
Huang, Ping  VIAFID ORCID Logo  ; Duan, Wei  VIAFID ORCID Logo  ; Cao Ruan  VIAFID ORCID Logo  ; Wang, Lingxian; Hosea, Rendy  VIAFID ORCID Logo  ; Wu, Zheng; Zeng, Jianting; Wu, Shourong; Kasim, Vivi  VIAFID ORCID Logo 
First page
e1011098
Section
Research Article
Publication year
2023
Publication date
Dec 2023
Publisher
Public Library of Science
ISSN
15537390
e-ISSN
15537404
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069179201
Copyright
© 2023 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.